Note: Check Setup the Environment of MLIR for the environment setup.
1. Run Example
Define a new env var:
export TOY_CH2_HOME="$MLIR_HOME/examples/toy/Ch2"
Create a file $TOY_CH2_HOME/input.toy
; Add the following content to the file:
# User defined generic function that operates on unknown shaped arguments.
def multiply_transpose(a, b) {
return transpose(a) * transpose(b);
}
def main() {
var a<2, 3> = [[1, 2, 3], [4, 5, 6]];
var b<2, 3> = [1, 2, 3, 4, 5, 6];
var c = multiply_transpose(a, b);
var d = multiply_transpose(b, a);
print(d);
}
Emit to AST (Abstract Syntax Tree):
toy-ch2 $TOY_CH2_HOME/input.toy -emit=ast
Emit to MLIR (Multi-Level Intermediate Representation):
toyc-ch2 $TOY_CH2_HOME/input.toy -emit=mlir
2. Add an Operator
2.1. Define the Operation
Add following code to $TOY_CH2_HOME/include/toy/Ops.td
:
// SubtractOp
def SubtractOp : Toy_Op<"subtract"> {
let summary = "element-wise subtraction operation";
let description = [{
The "subtract" operation performs element-wise subtraction between two
tensors. The shapes of the tensor operands are expected to match.
}];
let arguments = (ins F64Tensor:$lhs, F64Tensor:$rhs);
let results = (outs F64Tensor);
// Indicate that the operation has a custom parser and printer method.
let hasCustomAssemblyFormat = 1;
// Allow building an AddOp with from the two input operands.
let builders = [
OpBuilder<(ins "Value":$lhs, "Value":$rhs)>
];
}
Build MLIR again to imply the modifications:
bash $LLVM_PROJ_HOME/scripts/build-mlir.sh
Build errors pop out, because:
hasCustomAssemblyFormat
is assigned with1
, but the custom parser and printer method is not implemented.OpBuilder
is not implemented.
These errors will be handled later.
Note that the C++ implementation of class SubtractOp
has been generated in $LLVM_PROJ_HOME/build/tools/mlir/examples/toy/Ch2/include/toy/Ops.h.inc
, and as a result, you are now able to use class SubtractOp
with code completion and syntax highlighting of clangd.
2.2. Implement the Operations
To implement custom parser and printer methods as well as OpBuilder
, add the following code to $TOY_CH2_HOME/mlir/Dialect.cpp
:
// SubtractOp
void SubtractOp::build(mlir::OpBuilder &builder, mlir::OperationState &state, mlir::Value lhs, mlir::Value rhs) {
state.addTypes(UnrankedTensorType::get(builder.getF64Type()));
state.addOperands({lhs, rhs});
}
mlir::ParseResult SubtractOp::parse(mlir::OpAsmParser &parser, mlir::OperationState &result) {
return parseBinaryOp(parser, result);
}
void SubtractOp::print(mlir::OpAsmPrinter &p) { printBinaryOp(p, *this); }
2.3. Emit -
Operator
Go to $TOY_CH2_HOME/mlir/MLIRGen.cpp
, locate function mlirGen
and add the specific case for -
, as shown below:
mlir::Value mlirGen(BinaryExprAST &binop) {
// ...
switch (binop.getOp()) {
case '+':
return builder.create<AddOp>(location, lhs, rhs);
case '*':
return builder.create<MulOp>(location, lhs, rhs);
case '-':
return builder.create<SubtractOp>(location, lhs, rhs);
}
// ...
}
Rebuild the MLIR:
$LLVM_PROJ_HOME/scripts/build-mlir.sh
2.4. Test the -
Operator
Change the content of $MLIR_HOME/input.toy
to:
# User defined generic function that operates on unknown shaped arguments.
def multiply_transpose(a, b) {
return transpose(a) * transpose(b);
}
def main() {
var a<2, 3> = [[1, 2, 3], [4, 5, 6]];
var b<2, 3> = [1, 2, 3, 4, 5, 6];
var c = multiply_transpose(a, b);
var d = multiply_transpose(b, a);
var e = a - b;
print(e);
}
Generate MLIR:
toyc-ch2 $TOY_CH2_HOME/input.toy -emit=mlir